团队结构

您的位置: 首页 >> 团队队伍 >> 团队结构 >> 无机非金属材料系 >> 教授 >> 刘宗怀 >> 正文
刘宗怀

Ph. D., Faculty and School of Engineering, the University of Tokushima, Japan

工学博士,日本德岛大学工学科

Post-doc. Fellow, National Institute of Advanced Industrial Science and Technology, Japan (2001)

JSPS Post-doc. Fellow, Japan (2002-2004)

日本产业技术综合研究所及日本学术振兴会博士后

Professor, Shaanxi Normal University (2004- )

教授,william威廉官网

Tel: ++86-29-81530706

Fax: ++86-29-81530702

E-mail: zhliu@snnu.edu.cn

 

        (1)   Fabrication and delamination methods of layered inorganic materials.

        (2)     Reassembling reaction technology of functional inorganic nanosheets.

        (3)     Storage materials and technology (supercapacitor).

近年承担项目

1.  国家高技术发展863计划项目,微型大功率超级电容器用电极材料关键技术的研究(2007AA03Z248),98万元,2007.11-2011.12。

2.  国家自然科学基金项目,纳米层组装制备层状纳米功能材料及其超电容性能研究(20971082),33万元,2010.01-2012.12

3.  国家自然科学基金资助项目,纳米层状电极材料的纳米层结构调控及电容性能研究(51172137),60万,2012.01-2015.12

4.  陕西省自然科学基金重点项目,层状纳米功能材料的制备及其超电容性能研究 (2011JZ001)10万元;2012.01-2013.12

5.  国家自然科学基金项目,高比容量空洞结构电极材料的构筑及其超电容性能,(21471093)85万元,2015.01-2018.12

6.  国家自然科学基金项目,高能量密度纤维电极材料的构筑及其柔性与电容性能的优化平衡, (51772182),60万元,2018.01-2021.12。

近年授权专利 

    1. 刘宗怀, 王建芳, 高分散规则六边形层状氧化锰纳米片的制备方法, 国家发明专利, 专利授权号:ZL201410228660.5.

    2. 刘宗怀, 张改妮, 大比表面积介孔自组装结构氧化锰的制备方法, 国家发明专利, 专利授权号:ZL201410275473.2.

    3. 刘宗怀, 张改妮, 二维孔洞结构二氧化锰纳米片的制备方法, 国家发明专利, 专利授权号:ZL201510822459.4.

    4. 刘宗怀, 王璐, 一种δ型二氧化锰纳米线束的制备方法, 国家发明专利, 专利授权号:ZL201610172119.6.

    5. 刘宗怀, 蔡健伟, 平行于基板的规则层状氧化锰纳米线束的制备方法, 国家发明专利, 专利授权号:ZL201310063855.4.

获奖

    1. 纳米层组装制备无机层状纳米功能材料的基础研究(2011-3-102-R1), 三等, 2012年, 陕西省科学技术奖.

    2. 高能量密度超级电容器电极材料的设计、组装及性能应用基础研究 (S2017JLJS0545), 二等, 2017年, 陕西省科学技术奖.

    3. 纳米层组装制备无机层状纳米功能材料的基础研究(2010-C04), 一等, 2010年, 陕西高等学校科学技术奖.

    4. 高能量密度超级电容器电极材料的设计、组装及性能应用基础研究 (17C12), 一等, 2016年, 陕西高等学校科学技术奖.

近年发表论文

  1. Intercalation and delamination behavior of Ti3C2Tx and MnO2/Ti3C2Tx/RGO flexible fibers with high volumetric capacitance, Journal of Materials Chemistry A, 7, 12582-12592 (2019).

  2. Nb2O5 nanoparticles anchored on an N-doped graphene hybrid anode for a sodium-ion capacitor with high energy density, ACS Omega, 3, 15943-15951, (2018).

  3. CoNi2S4 nanoparticle/carbon nanotube sponge cathode with ultrahigh capacitance for highly compressible asymmetric supercapacitor, Small, 14, 27, 1800998 (2018).

  4. Mn3O4/RGO/SWCNT hybrid film for all-solid-state flexible supercapacitor with high energy density, Electrochimica Acta, 283, 174-182, (2018).

  5. Rational design and controllable preparation of holey MnO2 nanosheets, Chemical Communication, 53, 2950-2953 (2017).

  6. All solid-state V2O5-based flexible hybrid fiber supercapacitors, Journal of Power Sources, 371, 18-25 (2017).

  7. δ-MnO2 nanofiber/single-walled carbon nanotube hybrid film for all-solid-state flexible supercapacitors with high performance, Journal of Materials Chemistry A, 5, 19107-19115 (2017).

  8. High capacitive property for supercapacitor using Fe3+/Fe2+ redox couple additive electrolyte, Electrochimica Acta, 231, 705-712, (2017).

  9. Reduced graphene oxide/Mn3O4 nanocrystals hybrid fiber for flexible all-solid-state supercapacitor with excellent volumetric energy density, Electrochimica Acta, 242, 10-18, (2017).

  10. RGO/MnO2/polypyrrole ternary film electrode for supercapacitor, Materials Chemistry and Physics, 177, 40-47 (2016).

  11. MnO2/holey graphene hybrid fiber for all-solid-state supercapacitor, Journal of Materials Chemistry A, 4, 9088-9096 (2016).

  12. Mn3O4 nanocrystalline/graphene hybrid electrode with high capacitance, Electrochimica Acta, 188, 398-405 (2016).

  13. Formation process of holey graphene and its assembled binder-free film electrode with high volumetric capacitance, Electrochimica Acta, 187, 543-551 (2016).

  14. Holey graphene/polypyrrole nanoparticle hybrid aerogels with three dimensional hierarchical porous structure for high Performance supercapacitor, Journal of Power Sources, 317, 10-18 (2016).

  15. Three-dimensional tubular MoS2/PANI hybrid electrode for high rate performance supercapacitor, ACS Applied Materials & Interfaces, 7, 28294-28302 (2015).

  16. Mesoporous-assembled MnO2 with large specific surface area, Journal of Materials Chemistry A, 3, 14567-14572 (2015).

  17. Vanadyl phosphate/reduced graphene oxide nanosheet hybrid material and its capacitance,  Electrochimica Acta, 178, 312-320 (2015).

 



最近更新时间:2019-09-19 点击量:

扫描此二维码手机上查看当前信息